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Abstract

Accurate and efficient filtering techniques are required to suppress large nuisance components present in short-echo time magnetic
resonance (MR) spectra. This paper discusses two powerful filtering techniques used in long-echo time MR spectral quantitation, the
maximum-phase FIR filter (MP-FIR) and the Hankel-Lanczos Singular Value Decomposition with Partial ReOrthogonalization
(HLSVD-PRO), and shows that they can be applied to their more complex short-echo time spectral counterparts. Both filters are val-
idated and compared through extensive simulations. Their properties are discussed. In particular, the capability of MP-FIR for dealing
with macromolecular components is emphasized. Although this property does not make a large difference for long-echo time MR spec-
tra, it can be important when quantifying short-echo time spectra.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Efficient and accurate quantitation of metabolites from
short-echo time in vivo MR spectroscopy (MRS) might be
an important aid in the correct non-invasive diagnosis of
human brain pathology. Quantitation of short-echo time
MR spectra provides more metabolite information than
long-echo time spectra, but is hampered by broad baseline
signal contributions, resonance line-shape distortions, low
signal-to-noise ratios (SNR) and overlapping peaks in the
frequency domain (see, e.g. [1]). Therefore, in order to
obtain accurate parameter estimates, it is recommended to
disentangle the metabolite contributions from the
unwanted components. Numerous methods have been
developed to address this issue. In this paper, we focus on
two filtering techniques widely used with long-echo time
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MR spectra for solvent suppression: the maximum-phase
FIR filter (MP-FIR) [2] and the Hankel-Lanczos Singular
Value Decomposition with Partial ReOrthogonalization
(HLSVD-PRO) [3]. Since the differences between long-echo
and short-echo time MR spectra are substantial, the appro-
priateness of these filters for short-echo time spectra should
be validated. Indeed, to fully understand the behavior of
these filters it is imperative to study them in close connec-
tion with the type of signals they are applied to. Some char-
acteristics of the filters are more important for short-echo
time spectra than long-echo time spectra. Furthermore,
since the final goal is to obtain accurate parameter esti-
mates, a quantitation method is needed to validate and
compare the filters. AQSES, Automated quantitation of
short-echo time MRS spectra (see [4] and references
therein), has been chosen as quantitation method for the
reasons described below. The goal of the paper is therefore
twofold: first, to validate both filtering techniques for
short-echo time spectra, and second, to show the extra value
of MP-FIR over HLSVD-PRO for this type of spectra.
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The paper is organized as follows. First, we discuss
briefly the choice of the filtering techniques, MP-FIR and
HLSVD-PRO, and the quantitation method AQSES.
Then, the properties of both filters are described and illus-
trated on simple examples. The influence of the filters on
the estimated parameters is studied through extensive
numerical studies. Finally, the advantages of MP-FIR over
HLSVD-PRO are pointed out and the combined use of
MP-FIR with other quantitation methods is discussed.

Why MPFIR and HLSVD-PRO? Measurement
sequences fail to suppress completely the water resonance
without affecting the metabolites of interest. Therefore,
the so-called water suppressed signals contain a residual
water contribution which cannot be depicted by an analyt-
ical formulation. Time-domain quantitation methods (see,
e.g., [4–8]) cannot be used without first removing the water
components, while frequency-domain methods (see, e.g.,
[9–13]) can be applied directly to the water suppressed sig-
nal, but should consider the water tails as part of the mac-
romolecular baseline. Water suppression methods should
not influence the parameter estimates and should have a
low computational complexity. They can be categorized
in two main groups: on one hand, the convolution-based
methods [2,14–19] convolve the original signal with the
coefficients of a filtering window, and, on the other hand,
the SVD-based methods [3,20,21] make use of the singular
value decomposition of a Hankel matrix. In their review,
Coron et al. [22] compare five convolution-based methods:
the Gabor transform based method [17], the method by
Marion et al. [14], the filtering method of Sodano and Del-
epierre [15], the highpass butterworth filter described by
Cross [16], and the maximum phase finite impulse response
filter (MP-FIR) by Sundin et al. [2] which we study in this
paper. Among them, MP-FIR is the most accurate and effi-
cient method for quantifying long-echo time MRS spectra.
In addition, MP-FIR allows the inclusion of prior knowl-
edge that may be taken into account during quantitation
(see [22] for more details). In parallel, numerous SVD-
based methods have shown to be successful in removing
the water resonances, the most common method being
HLSVD developed by Pijnappel et al. [20] which reduces
the computational load of the original HSVD method
(Barkhuijsen et al. [23]). From HLSVD, several variants
have been developed (see, e.g., [3,24]). In [3], Laudadio
et al. compare HLSVD with two other proposed variants:
the method based on the Lanczos algorithm with Partial
ReOrthogonalization (HLSVD-PRO) and the method
based on the Implicitly Restarted Lanczos Algorithm
(HLSVD-IRL [24]). HLSVD-PRO and HLSVD-IRL out-
perform HLSVD in terms of computational efficiency
and numerical reliability. Moreover, HLSVD-PRO is fas-
ter than HLSVD-IRL. MP-FIR and HLSVD-PRO have
been selected since they are the most successful filters for
long-echo time MR spectra and they are based on two dif-
ferent approaches. Although, the main objective of these
filters is to remove the water resonances, we will show that
MP-FIR can have a substantial effect on the baseline which
can result in better parameter estimates. Nevertheless, MP-
FIR will not compete with baseline correction methods
but, combined with the latter, might improve the final esti-
mates. In this paper, we study three types of nuisance com-
ponents –noise, baseline and water resonances—and the
effect of the filters on these components. The choice of
AQSES for validating both filtering techniques can easily
be explained since

• AQSES is a time-domain quantitation method,
• both filtering techniques can easily be combined with

AQSES,
• AQSES has been designed for short-echo time MR spec-

tra, in contrast with AMARES [25], for example, typi-
cally designed for long-echo time MR spectra.

2. Theory

The goal of this section is to discuss the properties of
MP-FIR and HLSVD-PRO using their analytical form
in the specific context of short-echo time MR spectros-
copy. The use of these filters depends on the quantita-
tion method. For example, MP-FIR is applied to the
original and estimated signals (sum of Lorentzians) in
AMARESW [26], while it is applied to the original sig-
nal and each corrected metabolite profile in AQSES (see
below). Note that this section is applicable to any quan-
titation method that is based on the model described in
Eq. (1).

2.1. Model

In time-domain quantitation methods such as AQSES
or QUEST [7], the short-echo time MRS signal y is mod-
eled in the time domain as

yðnÞ ¼
XK

k¼1

akf
n
kvkðnÞ þ bðnÞ þ wðnÞ þ en;

n ¼ 0; . . . ;N � 1; ð1Þ

where {vk, for k = 1, . . . ,K} denotes the metabolite data-
base, akf

n
k the correction applied to each profile k in this

database, b(n) the baseline, w(n) the water component (as
well as other nuisance components), en the unknown noise
of zero mean and N the number of points. The complex
amplitudes ak and the complex signal poles fk can be writ-
ten as (with j ¼

ffiffiffiffiffiffiffi
�1
p

):

ak ¼ ak expðj/kÞ; fk ¼ expð�dk þ j2pfkÞDt; ð2Þ
where ak are the real amplitudes, /k are the phase shifts, dk

are damping corrections, fk are frequency shifts and Dt is
the sampling time. Let

ŷkðnÞ ¼ akf
n
kvkðnÞ; ð3Þ

where ŷk is the kth individually corrected metabolite
profile.
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The main goal of both filters is to filter out the water
component w which has resonance frequencies in a known
frequency interval. This interval is disjoint to the frequency
region (or interval) of interest where the metabolite reso-
nances are located. Quantitation methods based on itera-
tive optimization procedures can reasonably combine
filtering methods only if these methods are fast, especially
when numerous signals have to be processed (e.g. with
MRS imaging data). The computational load of SVD-
based methods is known to be much larger than the one
of simple convolution methods like MP-FIR (see, e.g.,
[2]). Moreover, the filter coefficients of MP-FIR are com-
puted only once prior to the optimization procedure. The
same filter coefficients are then used all along the iterative
optimization procedure such that MP-FIR boils down to
a simple matrix multiplication, which is considerably faster
than calculating the filter coefficients. To be used in the
optimization procedure, HLSVD-PRO would require an
SVD decomposition of a large matrix [3] at each iteration.
A matrix multiplication is much faster than an SVD
decomposition, making HLSVD-PRO much less attractive
for being used in the iterative optimization procedure.
1 They are distorted since they assume zero values for the unknown
y(�1), . . . ,y(�M + 1).
2.2. MP-FIR

MP-FIR is a maximum-phase FIR filter based on the
constrained least squares design of FIR filters proposed
by Selesnick et al. [27], who does not specifically consider
the case of complex damped exponentials. Nevertheless,
the use of a maximum-phase FIR filter instead of a general
FIR filter is motivated by the assumption of such a model
(sum of complex damped exponentials) as detailed below.
Moreover, the filter length is optimized with respect to
the noise and the water resonances of the signal under pro-
cessing. All components in the frequency region of no
interest are attenuated such that the largest magnitude in
that region is smaller than twice the standard deviation
of the noise. Although the filter coefficients are optimized
before starting the iterative optimization for quantitation,
MP-FIR is applied to the MRS signal and each corrected

metabolite profile {yk}k=1, . . . , K in each iteration of the opti-
mization procedure. In order to avoid signal distortion, the
first M � 1 points are discarded from the filtered signal [2],
M � 1 being the filter order.

Analytical validation of MP-FIR for short-echo time

MRS quantitation. MP-FIR was initially designed for
long-echo time MRS quantitation [2]. This section shows
that this filter can be applied to short-echo time MR spec-
tra as well.

The result of applying a FIR filter to a time-domain sig-
nal y is defined in the time domain by the convolution

yfilðnÞ ¼
XM�1

m¼0

hmyðn� mÞ; ð4Þ

where {hm}m=0, . . ., M � 1 are the constant (possibly com-
plex) filter coefficients. By truncating the distorted first
M � 1 data points1 of this filtered signal, with n =
0, . . . ,N �M, ŷfilðnÞ can be expressed as

ŷfilðnÞ ¼
XM�1

m¼0

hm

XK

k¼1

ŷkðn� mþM � 1Þ

¼
XM�1

m¼0

hm

XK

k¼1

akf
n�mþM�1
k

XP k

p¼1

ak;pf
n�mþM�1
k;p

¼
XM�1

m¼0

hm

XK

k¼1

XP k

p¼1

akf
n
kvkðnÞf�mþM�1

k f�mþM�1
k;p

¼
XK

k¼1

ŷkðnÞ
XM�1

m¼0

XP k

p¼1

hmf�mþM�1
k f�mþM�1

k;p ;

ð5Þ

where we assume that each metabolite profile vk(n) can be
modeled by a sum of Lorentzians, i.e., vkðnÞ ¼

PP k
p¼1ak;pf

n
k;p,

Pk being the number of Lorentzians used to model the
metabolite profile k. The linear part, ak,p, and the non-lin-
ear part, fk,p are defined similarly as in Eq. (2). Sundin et al.
[2] showed that each individual Lorentzian (or by extension
each corrected Lorentzian) lying in the frequency region of
interest is not distorted by the filter if the condition of no
distortion of Lorentzian (p,k) is written as

j�h�fk;pj ¼ 1 ð6Þ

where

�h ¼ ðhM�1; . . . ; h0Þ ð7Þ
and

�fk;p ¼ ð1 eð�dk;pþj2pfk;pÞDt . . . eðM�1Þð�dk;pþj2pfk;pÞDtÞT: ð8Þ

Selesnick et al. [27] provided tools for calculating the coef-
ficients hm, which ensure that the magnitude response of �h
(i.e., j�h ð1 ej2pfk;pDt . . . eðM�1Þðj2pfk;pÞDtÞTj) is approximately
equal to 1 in the frequency region of interest and equal
to zero elsewhere. If we use the linear FIR filter by Sele-
snick, the components with higher damping factors dk,p will
undergo a smaller gain (i.e., smaller j�h�fk;pj) than the other
ones resulting in signal distortion as described in [2]. In or-
der to reduce the effect of this distortion vector, Sundin
et al. [2] proposed to transform Selesnick’s FIR filter into
a maximum-phase FIR filter, moving most of the energy
towards the first coefficients of �h (i.e., hM�1, hM�2, . . .).
The same principle is applicable for short-echo time MR
spectra.

To understand the effect of the filter, we can compare
the filtered signal to the original signal in terms of signal-
to-baseline and signal-to-noise ratios. The baseline compo-
nents are assumed to have large damping values compared
to the metabolite peaks. We neglect the fact that yfil is lim-
ited to N �M + 1 points and not N. Each Lorentzian (k,p)
is thus multiplied by the complex number �h�fk;p. The term
j�h�fk;pj decreases exponentially (or linearly in a logarithmic
scale) with the damping values as illustrated in Fig. 1,
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resulting in an increased signal-to-baseline ratio. The
broader the passband, the more stable j�h�fk;pj with respect
to the damping coefficients. The influence of the damping
is thus mainly observable for narrow-passband filters.
The noise will not be attenuated (or negligibly) by the filter
in the region of interest, resulting in a decreased signal-
to-noise ratio. Choosing the broadest possible passband
seems to be reasonable. However, the signal-to-baseline
ratio will be higher for narrow-passband filters (see Exam-
ple 1 below). The choice of the filter region will result in a
trade-off between the increase of the signal-to-baseline
ratio and the decrease of signal-to-noise ratio. In other
words, narrow-passband filters will be preferred for signals
with large baseline components, while broad-passband fil-
ters will be more indicated for signals with small baseline
components like long-echo time MR spectra.

Example 1. [referring to Fig. 1] Considering a

sampling frequency of 1 kHz, an individual

Lorentzian with dk = 0.016 will be attenuated

by ±0.9 dB (�10% loss in magnitude) by a

narrow-passband filter ([0.25,4.2] ppm),

while it will be attenuated by ±0.25 dB (�3%
loss in magnitude) by a broad-passband filter

([�3,7] ppm). Note that this Lorentzian would

be much more attenuated by a linear-phase

filter: 5.6 dB (�48% loss in magnitude) for

[0.25,4.2] and 4.9 dB (�43% loss in magnitude)

for [�3,7]. This shows why a linear-phase

filter is not suitable for Lorentzians.
2.3. HLSVD-PRO

HLSVD-PRO is a subspace-based method for modeling
a sum of exponentially damped sinusoids (Lorentzians),
which can be used as a frequency-selective filter.
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Fig. 1. Magnitude of j�h�fk;pj as a function of the frequency for different
damping coefficients dk (in kHz*rad) and different filtering regions (in
black for the frequency interval [0.25,4.2] ppm and in gray for
[�3,7] ppm). The filter order is 70.
HLSVD-PRO is applied, before entering the iterative
quantitation procedure, to the MRS signal, as well as to
each metabolite profile included in the database.
HLSVD-PRO models the original signal and the metabo-
lite profiles such that

ŷðnÞ ¼
XL0

i¼1

a0;if
n
0;i ¼

XW 0

i¼1

a0;jðiÞf
n
0;jðiÞ þ

XL0

i¼W 0þ1

a0;jðiÞf
n
0;jðiÞ

v̂kðnÞ ¼
XLk

i¼1

ak;if
n
k;i ¼

XW k

i¼1

ak;jðiÞf
n
k;jðiÞ þ

XLk

i¼W kþ1

ak;jðiÞf
n
k;jðiÞ

ð9Þ

where j(i), i = 1, . . .,L0 (respectively, Lk) is a permutation
of i = 1, . . . ,L0 (respectively, Lk) such that the indices of
Lorentzians with central frequency inside the water reso-
nance region are the first W0 (respectively, Wk) ones. L0

(respectively, Lk) is the model order of HLSVD-PRO ap-
plied to the original signal (respectively, metabolite profile
k), W0 (respectively, Wk) is the number of Lorentzians fall-
ing within the water resonance region when applying
HLSVD-PRO to the original signal (respectively, metabo-
lite profile k). The Lorentzians located in the frequency re-
gion of no interest are then subtracted from the original
signal y, as well as from the initial metabolite profiles vk,
k = 1, . . . ,K, such that

yfilðnÞ ¼ yðnÞ �
XW 0

i¼1

a0;jðiÞf
n
0;jðiÞ;

ŷfilðnÞ ¼
XK

k¼1

akf
n
k vkðnÞ �

XW k

i¼1

ak;jðiÞf
n
k;jðiÞ

 !
;

ð10Þ

where ŷfil denotes the estimate of the filtered MRS signal.
The filtered model ŷfil is used to fit the filtered signal yfil.

Besides being relatively slow compared to MP-FIR, the
major problem with HLSVD-PRO is that it assumes a
Lorentzian model which is optimistic given the random
nature of the remaining water resonances. This results in
a decreased signal-to-baseline ratio, which can be illustrated
by Example 2. The signal-to-noise ratio is however kept
constant.

Example 2. [referring to Fig. 2] Suppose a

signal containing three peaks, 2 Lorentzians

at 2 and 3.5 ppm for the metabolites and 1

Gaussian at 4.7 ppm for the water peak, as

plotted in Fig. 2a. We apply HLSVD-PRO on the

frequency region [0.25 4] ppm. The model order

was set at 4 since at least 2 Lorentzians are

used for modeling a Gaussian. In Fig. 2b, we

reconstruct the water components that have

been removed by the filter. A bump is clearly

visible in the transition region between the

water and the metabolites. This bump is due to

the nature of the model used in HLSVD-PRO.

Increasing the model order would help to

reduce the water component but would not help

to substantially reduce this ‘‘bump effect’’.

Consequently, the residual water tails will
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Fig. 2. (a) Real part of the spectrum. (b) Real part of the water components in the frequency domain (true components in black and estimated ones in
gray). Bump effect illustrated by applying HLSVD-PRO on a signal with a Gaussian water peak.

Table 1
Example 2: Amplitude estimates obtained with AQSES in combination
with HLSVD-PRO or MP-FIR (last column)

Lorentzian at True HLSVD-PRO MP-FIR

2 ppm 10 10.27 10.04
3.5 ppm 10 10.69 9.96

The true amplitudes are 10 for each Lorentzian.
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be seen as baseline components overlapping

with the frequency region of interest, result-

ing in a decreased signal-to-baseline ratio.

To get an idea of the influence of this bump

effect on the amplitude estimates, we apply

AQSES to the filtered signal. The results are

showninTable1. For comparison, the resultsof

MP-FIR are also shown. The residual water tail

affects the parameter estimates, resulting in

a 2.7% error for the peak at 2 ppm and 6.9% error

for the peak at 3.5 ppm, while the errors are

less than 0.5% when using MP-FIR.
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Fig. 3. Real part of the phased spectrum chosen from set 1 in [4].
3. Materials and methods

The properties of the filters are illustrated on simple
examples in the previous section. The goal of the following
sections is to compare these filters on more complex and
more realistic signals. Their robustness is studied with
respect to the choice of a variety of nuisance components
and filtering regions. An in vivo experiment shows the influ-
ence of these filters on the sensitivity of the quantitation
algorithm.

3.1. Database and simulated signals

The database used in AQSES is identical to the one used
in [4] with 6 metabolites + 2 lipids: Myo-inositol (Myo),
Phosphorylcholine (PCh), Creatine (Cr), Glutamate (Glu),
N-acetylaspartate (NAA), Lactate (Lac), Lipid at 1.3 ppm
(Lip1), Lipid at 0.9 ppm (Lip2). Simulated data were gener-
ated to compare the two filtering methods, HLSVD-PRO
and MP-FIR. A signal free from nuisance components
(except for the reference peaks at 0 and 8.44 ppm which
are 3-trimethylsilyl-1-propane-sulfonic acid and formate,
respectively) has been chosen from set 1 in [4]. This signal
was quantified perfectly (i.e., no error in amplitude estima-
tion) with AQSES. This guarantees that all estimation
errors are due to nuisance components. Although AQSES
was applied on the unphased signal, we display the phased
signal in Fig. 3 for a better signal assessment. For sake of
clarity and space, only one signal (i.e., one set of parameters
ak, /k, dk and fk) have been analyzed. The true amplitude
values are given in Table 2.

Although different signal parameter values will lead to
other results, one can expect that the general trends (i.e.,
limitations and potentials of each filtering technique) are
preserved. The nuisance components have been added to
this signal to generate four different sets of signals as
follows:

• set 1 = signal + low noise
• set 2 = signal + low noise + high baseline + water
• set 3 = signal + high noise
• set 4 = signal + high noise + high baseline + water

The baseline distortion was based on information from
Table 1 in [28]; the baseline is the sum of Gaussians
referred to as lip3, lip4, lip5, mm2, mm3 and mm4 in that



Table 2
True amplitudes in arbitrary units used to construct the signal in Fig. 3

NAA Myo Cr Pch Glu Lac Lip1 Lip2

40.60 13.40 27.12 9.64 29.51 16.65 0.21 0.10

298 J.-B. Poullet et al. / Journal of Magnetic Resonance 186 (2007) 293–304
paper. This baseline b overlaps with the frequency region of
the metabolites. The water profile has been extracted from
a water suppressed in vivo spectrum by means of HLSVD-
PRO. Low and high noise levels correspond to SNR=300
and SNR=75, respectively. The SNR is defined as the ratio
of the reference peak height at 8.44 ppm and the standard
deviation of the circular white gaussian noise, both in the
frequency domain. Each set contains 256 simulated spec-
tra. As illustration, one signal from set 4 is plotted in
Fig. 4 (the signal phase is corrected).

3.2. Methodology

In order to test the sensitivity of each method with
respect to the frequency bounds of the nuisance region,
we defined two filtering regions: [0.25,4.2], [0.25,4.5] in
ppm. The frequency region close to the water resonance
at 4.7 ppm being more sensitive than the other one, we lim-
ited our study to the variations of the bounds for that
region.

The effects of the nuisance components are tested with 6
model settings, which differ from each other regarding
three options: choice between HLSVD-PRO or MP-FIR,
the use of a baseline in the model or not, and the bounds
of the region to be filtered. Note that these options can
be easily defined in AQSES-GUI, the graphical user inter-
face of AQSES [4]. The regularization parameter k, which
controls the degree of smoothness of the baseline, has been
defined manually. This parameter is used only when the
baseline is included in the model (as a linear combination
of spline basis functions). For each set, the best value of
k (i.e., providing the amplitude estimates closest to the true
amplitudes) was chosen for each filtering technique, result-
ing in 2 * 4 = 8 values of k for all sets.
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Fig. 4. Real part of the phased spectrum from set 4.
The model settings were defined as follows:

• Model setting 1: Use of the baseline in the model and
MP-FIR filtering in [0.25,4.2] ppm

• Model setting 2: Use of the baseline in the model and
MP-FIR filtering in [0.25,4.5] ppm

• Model setting 3: No use of baseline in the model and
MP-FIR filtering in [0.25,4.2] ppm

• Model setting 4: Use of the baseline in the model and
HLSVD-PRO filtering in [0.25,4.2] ppm

• Model setting 5: Use of the baseline in the model and
HLSVD-PRO filtering in [0.25,4.5] ppm

• Model setting 6: No use of baseline in the model and
HLSVD-PRO filtering in [0.25,4.2] ppm

Each set defined in Section 3.1 was quantified using each
model setting. In order to compare the results obtained
with the different model settings, we use the relative root
mean square error (RRMSE), defined as

RRMSEk ¼ 100

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L

XL

l¼1

ðak � ~ak;lÞ2

a2
k

vuut ; ð11Þ

where ak (respectively, ~ak;l) is the true (respectively, esti-
mated) amplitude for metabolite profile k, l refers to the
lth simulation and L is the total number of simulations
within each set, i.e., 256. The model order used in
HLSVD-PRO was fixed at 25 as recommended in [29].

3.3. In vivo experiment

The performances of MP-FIR and HLSVD-PRO with
respect to the regularization parameter k are tested on an
in vivo MR proton spectrum of normal brain tissue,
acquired on a 1.5 T Philips NT Gyroscan using a PRESS
sequence with an echo time of 23 ms, and a PRESS box
of 4 · 3 · 3 cm3. This water suppressed signal was eddy
current corrected using Klose’s method [30] (see Fig. 5).
Note that other methods for eddy current correction such
as QUECC [31] could also be used.
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Fig. 5. Real part of the in vivo spectrum corrected for eddy current effects.
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The database used to fit the signal is identical to the one
used for the simulated data. Glu is used to estimate the
contribution of glutamate and glutamine and will be
denoted Glx and PCh for the contribution of choline
compounds.
4. Results

Representative fits of sets 1 and 4, obtained by using
model settings 1 and 4, are given as illustration in Fig. 6.

The results are shown in Fig. 7. Each subfigure corre-
sponds to one specific set. Model setting 1, where the base-
line is modeled and MP-FIR is used, provides the best
results with a RRMSE that remains under 50% for all
metabolites and all sets. In most of the cases, the RRMSEs
are larger when using HLSVD-PRO instead of MP-FIR
with some values larger than 100%, especially for lower
concentration metabolites such as Lip1 and Lip2.

Including the baseline into the model is especially inter-
esting when the signal baseline is large even if we observe
relatively large errors for sets 2 and 4. Cr and Myo are less
affected by the addition of the baseline than the other
metabolites such as Glu. Cr is known to be less correlated
with the baseline [7] and Myo shows up in a frequency
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Fig. 6. (a) Model setting 1 (MP-FIR). (b) Model setting 4 (HLSVD-
PRO). Magnitude of the filtered original spectra vs. filtered estimated
spectra for sets 1 and 4 using model settings 1 and 4.
range where the baseline is less present (see, e.g., [28]).
The profile of Glu is relatively widely spread in the fre-
quency domain. Therefore, in the presence of a strong
baseline, Glu tends to fit a part of the baseline resulting
in large errors for this metabolite. The differences between
HLSVD-PRO and MP-FIR are larger when the signal con-
tains a strong baseline. Indeed, strong differences between
HLSVD-PRO and MP-FIR appear in set 1 only for Lac,
Lip1 and Lip2, while in sets 2 and 4 with high baseline
there are in addition also visible differences between
HLSVD-PRO and MP-FIR for Cr, Glu and NAA. Com-
paring the bottom plots in Fig. 6 corresponding to set 4,
one can see that a large part of the baseline has been fil-
tered out by MP-FIR while it is still present in the filtered
signal (in light gray) when using HLSVD-PRO. The signal-
to-baseline ratio is increased as predicted in Section 2.2,
resulting in better amplitude estimates. Modeling the base-
line seems to be useful when using HLSVD-PRO even if no
baseline is added to the signal (see Myo, PCh, Cr, Glu and
NAA in Fig. 7a). This might be due to the difficulty of
HLSVD-PRO to model the water peak with pure Lorentz-
ians. Another explanation can be the frequency misalign-
ments between the original signal and the metabolite
profiles as described in the discussion section.

The noise mainly affects the metabolites of lower concen-
tration such as Lip1 and Lip2. If we only look at set 3 (i.e.,
signals with high noise and without water nor baseline), all
model settings give similar results, thus no model setting
seems to be preferable over the others. The RRMSEs of
metabolites of larger concentration (NAA, Cr, Glu) turn
out to be similar between sets 1 and 3 for model setting 6
(error mainly explained by this model setting), but much
better for other model settings. When comparing sets 2
and 4 (Fig. 7b and Fig. 7d), the effect of adding a larger
noise level is clearly visible. The tested model settings seem
to be robust against noise in the sense that if a small
RRMSE is obtained for a certain metabolite in set 1
(respectively, set 2), a small RRMSE is also obtained in
set 3 for the same metabolite (respectively, set 4). For each
metabolite, the shapes depicted by the 6 model settings (6
bars) are quite similar for sets 2 and 4, meaning that the
effect of the added noise on the RRMSE does not depend
on the model setting.

The magnitude of the water resonance has a very small
impact on the RRMSE for both MP-FIR and HLSVD-
PRO. In contrast, the shape of the water resonance has
more influence, especially for HLSVD-PRO as described
in Section 2.3. More important for MP-FIR is the closeness
between the region of interest and the water resonance.
Regarding the choice of the filtering region, HLSVD-
PRO seems to be less sensitive than MP-FIR, which exhib-
its substantially larger errors when the bound of the filter-
ing region gets closer to the water resonance. This effect is
especially noticeable for low noise signals (compare model
settings 1 and 2 in sets 1 and 2, Fig. 7). Comparable or even
better results are obtained with HLSVD-PRO when the fil-
tering region is set to [0.25,4.5] ppm.
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The computation times needed per spectrum for quan-
titation have been reported in Table 3 for model settings
1, 3, 4 and 6. AQSES has been run on a Windows XP
platform with a Pentium 4 (3 GHz CPU, 1 Gb RAM).
These computation times have been averaged out over
sets 2 and 4 when modeling the baseline and over sets
1 and 3 when no baseline was modeled. Although mod-
eling the baseline significantly increases the computation
time (see [4] for more details), both filtering techniques
used as described above are comparable in terms of
efficiency.
Table 3
Averaged computation times (in seconds) per spectrum for model setting 1
(MP-FIR and baseline), 3 (MP-FIR and no baseline), 4 (HLSVD-PRO
and baseline) and 6 (HLSVD-PRO and no baseline)

MP-FIR HLSVD-PRO

Baseline (sets 2 and 4) 2.13 2.52
No baseline (sets 1 and 3) 0.61 0.72
4.1. In vivo experiment

The bounds of the filters are [0.25 4.1] ppm. They are
chosen in such a way that the unwanted components out-
side the frequency range of interest are completely removed
by filtering. The model order of HLSVD-PRO was fixed at
30 to guarantee a complete suppression of the water reso-
nances. The amplitude estimates for the main 5 metabolites
are shown in Fig. 8 for different smoothness levels of the
modeled baseline. The results obtained with MP-FIR or
HLSVD-PRO are sensitive to these levels of smoothness,
lower levels (levels 1–3 in Fig. 8) providing more variability
in the amplitude estimates. Nevertheless, less variability in
the results was observed with MP-FIR for higher levels of
smoothness. Similar observations were made when estimat-
ing the best k for the simulated spectra (the results are not
reported for sake of space). On the contrary, a not suffi-
ciently smooth baseline alters the amplitude estimates when
filtering with MP-FIR. In that case, the modeled baseline
tends to fit the metabolites widely spread in the frequency
domain like Myo and Glx. Note that the amplitude
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estimates of Cr, PCh and NAA are constant for the differ-
ent smoothness levels of the baseline.

Relatively large differences appear in the amplitude esti-
mates when comparing the results obtained with MP-FIR
and HLSVD-PRO for a specific smoothness level of the
modeled baseline. Most often, the frequency correction
reaches its maximum fixed value (set at 20 Hz in AQSES)
for most of the metabolites when using HLSVD-PRO, sug-
gesting that the metabolites either try to fit the baseline or
try to fit other metabolites that are not contained in the
database. We also notice larger residue when using
HLSVD-PRO. Although conclusions cannot be drawn,
one can think that the amplitude obtained with HLSVD-
PRO are overestimated. The simulations above confirm
this trend to overestimate the metabolite amplitudes when
the original signal contains a non-smooth baseline. The
results in terms of amplitude ratios are in agreement with
the ratios of metabolite concentrations reported by
Govindaraju et al. (Table 2 in [32]).
5. Discussion

SVD-based methods such as HLSVD-PRO are often
chosen for removing the water components in MRS spec-
tra. As preprocessing method, they exhibit several advanta-
ges: the phase is not distorted, the water resonance seems
visually removed, the number of parameters to be chosen
by the user is restricted to 2 (the model order and the filter-
ing region). Nevertheless, we showed that, in presence of
non-Lorentzian water peaks (see Section 2), this algorithm
fails to completely remove the residual water tails in the
frequency region of interest. The metabolite contributions
are normally kept unchanged if there is no misalignment
between the metabolite profiles and the original signal.
Consequently, the signal-to-baseline ratio (SBR) is
decreased. Fortunately, this decrease is usually not dra-
matic since the residual water tails are often much smaller
than the baseline itself. On the contrary, MP-FIR will
increase the signal-to-baseline ratio as described in Section
2. The signal-to-noise ratio decreases when using MP-FIR
while it is stable in the case of HLSVD-PRO. MP-FIR will
not remove the baseline but will reduce it more than it
reduces the metabolite contributions. In this sense, MP-
FIR can be useful for better disentangling the metabolites
from overlapping macromolecules. HLSVD-PRO encoun-
ters indeed more difficulties when dealing with signals
affected by large baselines (see Section 4). MP-FIR also
reduces the sensitivity of the regularization parameter k
in AQSES. The results show that the amplitude estimates
remain constant over a relatively large range of k values.
We can intuitively think that similar conclusions would
be observed for other quantitation methods based on a
semiparametric model.

The results show that MP-FIR outperforms HLSVD-
PRO whatever the nuisance components. A major part of
the explanations is due to the increase of signal-to-baseline
ratio when using MP-FIR. The fact that HLSVD-PRO is
used as a preprocessing step can also generate errors in
the amplitude estimation. This will be the case if the metab-
olite profiles and the original signal are not correctly
aligned and if the bounds of the filtering region are too
close to the metabolite peaks. Since MP-FIR is applied
during quantitation at each iteration to the corrected
metabolite profiles (see Eq. (5)), the transition band of this
signal and the metabolite profiles of the basis set will match
after a couple of iterations thereby avoiding border prob-
lems. As described above, HLSVD-PRO could be applied
after correction of the metabolite profiles, but would result
in an inefficient method barely usable when large sets of
signals have to be processed. The efficiency depends also
on the model order used in HLSVD-PRO. However, we
noticed that the choice of the model order was not crucial
as long as it remains around 25 and is kept sufficiently high.
A similar observation was made by Sundin et al. [2] for
long-echo time MR spectra with a model order of 12
instead of 25. For a typical model order of 25, HLSVD-
PRO can encounter technical problems due to shortage
of memory when processing very long signals. This is rarely
the case for short-echo time signals that are usually shorter
or equal to 2048 points.

As for long-echo time spectra, the choice of the MP-FIR
filter order should result from a tradeoff between fulfilling
the filter requirements (stop band suppression, passband
ripple, etc.) and preserving most of the useful information
from the original signal. For example, a higher filter sup-
pression and therefore a higher filter order is required if
some of the nuisance peaks in the stop band have a fast
decay [26]. Nevertheless, the filter order should be bounded
to a maximum value to keep a good SNR and to avoid
numerical problems caused by the computation of polyno-
mial roots and coefficients when transforming the FIR
filter into a maximum-phase FIR filter. Numerical
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problems were encountered in some cases for M larger than
80. We noticed experimentally that a satisfactory transition
band and a satisfactory suppression in the stop band are
obtained for M = 60. A typical stop band suppression of
such a filter is �65 dB, which suffices for in vivo MR spec-
tra with presaturated water. The experiments show that the
filter design algorithm proposed by Vanhamme et al. [26]
converges in most of the cases to suitable filter parameters
for short-echo time MR spectra. It optimizes the filter
order and the ripple magnitudes in the frequency region
of stop band and passband and finds the best correspond-
ing transition bands. The results show that the amplitude
estimates can be affected when the cutoff frequency is too
close to the water resonances, but good amplitude esti-
mates were obtained in a reasonable range around
4.2 ppm ([4.0 4.3] ppm). In summary, the filter order of
MP-FIR should lie between 30 and 80 to ensure a good fil-
tering without facing numerical issues. The region of inter-
est should be kept sufficiently far away from the water
resonances (e.g., the frequency region [0.25 4.2] ppm).
The baseline should be included in the model in AQSES
when a baseline is expected in the original signal. The reg-
ularization parameter should be chosen within a range
where the amplitude estimates are constant.

As explained before, MP-FIR gives an added value to
AQSES compared to an SVD-based method like
HLSVD-PRO. First, MP-FIR improves the performance
of AQSES when dealing with signals affected by a baseline;
and, second, MP-FIR can be used in the optimization pro-
cedure without increasing significantly the computation
times (simple matrix multiplication).

Increasing the signal-to-baseline ratio improves the ini-
tial estimates and thereby reduces the risk of converging
to wrong parameter estimates (local minimum). Methods
based on the Levenberg–Marquardt least-squares minimi-
zation method (see, e.g., [4,8,33–35]) are indeed sensitive
to the initial parameter estimates. For example, Ratiney
et al. indicated in [7] that the uncertainty on the final esti-
mates is sensitive to the truncated initial data points which
influence directly the initial parameter estimates. Soher
et al. studied in [36] four different optimization procedures:
the iterative procedures based on Young’s method with
wavelet or spline baseline characterization, and the sin-
gle-pass optimization with wavelet or spline baseline func-
tion (semiparametric model). He concluded that the
iterative methods were more dependent on having good
starting values for the baseline parameters, without dra-
matic differences in performance regarding the choice of
the baseline model (wavelets or splines). This tends to show
that the baseline should be included in the model, as con-
firmed by our results, at least if an initial estimate of the
baseline is rather uncertain (i.e., with high risk of wrong
initial guess).

Although MP-FIR has been designed for processing
time-domain signals, it might be helpful for frequency-
domain methods like LCModel [34]. Used as preprocessing
method prior to LCModel, it can reduce the contribution
of the baseline while suppressing completely the water res-
onances which might have some contributions in the fre-
quency region of interest. Using LCModel, Seeger et al.
[28] showed that extending the standard basis set of metab-
olites by inclusion of parameterized components for mac-
romolecules and lipids can improve the parameter
estimates and especially estimates of metabolites such as
NAA, Glx or Lac. Our results have shown that those
metabolites are indeed sensitive to the baseline. Neverthe-
less, adding more components (Seeger et al. added five
components to take into account the lipids and the macro-
molecules) complicates the model, increasing the degrees of
freedom and so the risk of converging to a local minimum.
MP-FIR might limit this risk since it reduces the contribu-
tion of large damping components (like macromolecules
and lipids). Furthermore, additional prior knowledge
might help in identifying appropriate initial parameter esti-
mates. For example, Hofmann et al. [37] showed that the
macromolecule baseline is different in composition and
concentration between white and gray matter volumes,
and depends on the age but not on the gender of the sub-
ject. MP-FIR allows to incorporate this prior knowledge
in the model.

The fact that MP-FIR can be used in the optimization
procedure allows to avoid frequency misalignments
between the metabolite profiles and the original signal.
Therefore, procedures like QUEST [7] using solvent sup-
pression methods (like HLSVD) prior to quantitation will
probably require a more stringent alignment of the original
signal and the metabolite profiles to avoid that some peaks
are (partially) filtered out while they should not. MP-FIR
could be used prior to QUEST or inside the iterative pro-
cedure in QUEST with the In-Base method [35]. To fully
benefit from it, MP-FIR should be used prior to the base-
line extraction, and therefore, it is not recommended inside
the iterative procedure in QUEST with the Subtract
method [35].

MP-FIR, already successful for water removal for long-
echo time MR spectra, might even be more powerful for
short-echo time MR spectra due to its ability to deal with
the baseline, thereby increasing substantially (compared
to HLSVD-PRO) the accuracy level of the parameter esti-
mates obtained with AQSES. It can be used within the
optimization procedure of most of the time-domain meth-
ods based on the Levenberg–Marquardt algorithm (Elster
et al.’s method [8], AMARESW [26], VARPRO [38], etc.).

6. Conclusions

This paper shows that HLSVD-PRO and MP-FIR, two
filtering techniques used in long-echo MRS data quantita-
tion, can be successfully applied to short-echo time spectra.
The potentials and limitations of both techniques have
been studied and some recommendations regarding their
use have been given. Simulations show that MP-FIR out-
performs HLSVD-PRO in terms of accuracy, computa-
tional efficiency and robustness against the nuisance
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components. This is explained by two main reasons: MP-
FIR increases the signal-to-baseline ratio while it slightly
decreases with HLSVD-PRO, and MP-FIR is used inside
the optimization procedure while HLSVD-PRO is used
prior to quantitation. MP-FIR turns out to be especially
powerful for time-domain quantitation methods based on
a semiparametric model.
Acknowledgments

Research supported by Research Council KUL: GOA-
AMBioRICS, Centers-of-excellence EF/05/006 Optimiza-
tion in Engineering, IDO 05/010 EEG-fMRI, several
PhD/postdoc and fellow grants; Flemish Government:
FWO: PhD/postdoc grants, projects, G.0407.02 (support
vector machines), G.0360.05 (EEG, Epileptic), G.0519.06
(Non-invasive brain oxygenation), FWO-G.0321.06 (Ten-
sors/Spectral Analysis), G.0341.07 (Data fusion), research
communities (ICCoS, ANMMM); IWT: PhD Grants; Bel-
gian Federal Science Policy Office IUAP P5/22 (‘‘Dynami-
cal Systems and Control: Computation, Identification and
Modelling’’); EU: BIOPATTERN (FP6-2002-IST 508803),
ETUMOUR (FP6-2002-LIFESCIHEALTH 503094),
Healthagents (IST–200427214), FAST (FP6-MC-RTN-
035801); ESA: Cardiovascular Control (Prodex-8 C90242).
References

[1] A. Devos, L. Lukas, J.A.K. Suykens, L. Vanhamme, A.R. Tate, F.A.
Howe, C. Majos, A. Moreno Torres, C. van der Graaf, M. Arus, S.
Van Huffel, Classification of brain tumours using short echo time 1H
MR spectra, J. Magn. Reson. 170 (1) (2004) 164–175.

[2] T. Sundin, L. Vanhamme, P. Van Hecke, I. Dologlou, S. Van Huffel,
Accurate quantification of 1H spectra: from finite impulse response
filter design for solvent suppression to parameter estimation, J. Magn.
Reson. 139 (2) (1999) 189–204.

[3] T. Laudadio, N. Mastronardi, L. Vanhamme, P. Van Hecke, S. Van
Huffel, Improved Lanczos algorithms for blackbox MRS data
quantitation, J. Magn. Reson. 157 (2) (2002) 292–297.

[4] J.-B. Poullet, D.M. Sima, A.W. Simonetti, B. De Neuter, L.
Vanhamme, P. Lemmerling, S. Van Huffel, An automated quantita-
tion of short echo time MRS spectra in an open source software
environment: AQSES, NMR Biomed. in press.

[5] L. Vanhamme, T. Sundin, P. Hecke, S. Van Huffel, MR spectroscopy
quantitation: a review of time-domain methods, NMR Biomed. 14 (4)
(2001) 233–246.

[6] R. Romano, A. Motta, S. Camassa, C. Pagano, M.T. Santini, P.L.
Indovina, A new time-domain frequency-selective quantification
algorithm, J. Magn. Reson. 155 (2) (2002) 226–235.

[7] H. Ratiney, M. Sdika, Y. Coenradie, S. Cavassila, D. van Ormondt,
D. Graveron-Demilly, Time-domain semi-parametric estimation
based on a metabolite basis set, NMR Biomed. 18 (1) (2005) 1–13.

[8] C. Elster, F. Schubert, A. Link, M. Walzel, F. Seifert, H. Rinneberg,
Quantitative magnetic resonance spectroscopy: semi-parametric mod-
eling and determination of uncertainties, Magn. Reson. Med. 53
(2005) 1288–1296.

[9] V.A. Mandelshtam, H.S. Taylor, A.J. Shaka, Application of the filter
diagonalization method to one- and two-dimensional NMR spectra,
J. Magn. Reson. 133 (2) (1998) 304–312.

[10] S. Mierisova, M. Ala-Korpela, MR spectroscopy quantitation: a
review of frequency domain methods, NMR Biomed. 14 (4) (2001)
247–259.
[11] Y. Hiltunen, J. Kaartinen, J. Pulkkinen, A.M. Hakkinen, N.
Lundbom, R.A. Kauppinen, Quantification of human brain
metabolites from in vivo 1H NMR magnitude spectra using
automated artificial neural network analysis, J. Magn. Reson. 154
(1) (2002) 1–5.

[12] P. Stoica, N. Sandgren, Y. Selen, L. Vanhamme, S. Van Huffel,
Frequency-domain method based on the singular value decomposi-
tion for frequency-selective NMR spectroscopy, J. Magn. Reson. 165
(1) (2003) 80–88.

[13] R.E. Gabr, R. Ouwerkerk, P.A. Bottomley, Quantifying in vivo MR
spectra with circles, J. Magn. Reson. 179 (1) (2006) 152–163.

[14] D. Marion, M. Ikura, A. Bax, Improved solvent suppression in one-
and two-dimensional NMR spectra by convolution of time-domain
data, J. Magn. Reson. 84 (2) (1989) 425–430.

[15] P. Sodano, M. Delepierre, Binomial frequency response to non-
binomial pulse sequences for efficient water suppression, J. Biomol.
NMR 3 (4) (1993) 471–477.

[16] K.J. Cross, Improved digital filtering technique for solvent suppres-
sion, J. Magn. Reson. Ser. A 101 (2) (1993) 220–224.

[17] J.P. Antoine, A. Coron, J.M. Dereppe, Water peak suppression: time-
frequency vs time-scale approach, J. Magn. Reson. 144 (2) (2000)
189–194.

[18] J.P. Antoine, C. Chauvin, A. Coron, Wavelets and related time-
frequency techniques in magnetic resonance spectroscopy, NMR
Biomed. 14 (4) (2001) 265–270.

[19] U.L. Gunther, C. Ludwig, H. Ruterjans, WAVEWAT-improved
solvent suppression in NMR spectra employing wavelet transforms, J.
Magn. Reson. 156 (1) (2002) 19–25.

[20] W.W.F. Pijnappel, A. van den Boogaart, R. de Beer, D. van
Ormondt, SVD-based quantification of magnetic resonance signals, J.
Magn. Reson. 97 (1) (1992) 122–134.

[21] H. Chen, S. Van Huffel, J. Vandewalle, Bandpass prefiltering for
exponential data fitting with known frequency region of interest,
Signal Process 48 (2) (1996) 135–154.

[22] A. Coron, L. Vanhamme, J.P. Antoine, P. Van Hecke, S. Van Huffel,
The filtering approach to solvent peak suppression in MRS: a critical
review, J. Magn. Reson. 152 (1) (2001) 26–40.

[23] H. Barkhuijsen, R. de Beer, D. van Ormondt, Improved algorithm for
noniterative time-domain model fitting to exponentially damped
magnetic resonance signals, J. Magn. Reson. 73 (3) (1987) 553–557.

[24] D. Calvetti, L. Reichel, D.C. Sorensen, An implicitly restarted
Lanczos method for large symmetric eigenvalue problems, Electron.
Trans. Numer. Anal. 2 (1994) 1–21.

[25] L. Vanhamme, A. van den Boogaart, S. Van Huffel, Improved
method for accurate and efficient quantification of MRS data with use
of prior knowledge, J. Magn. Reson. 129 (1997) 35–43.

[26] L. Vanhamme, T. Sundin, P. Van Hecke, S. Van Huffel, R. Pintelon,
Frequency-selective quantification of biomedical magnetic resonance
spectroscopy data, J. Magn. Reson. 143 (1) (2000) 1–16.

[27] I.W. Selesnick, M. Lang, S.C. Burrus, Constrained least square design
of FIR filters without specified transition bands, IEEE Trans. Signal
Process 44 (1996) 1879–1892.

[28] U. Seeger, U. Klose, Parameterized evaluation of macromolecules
and lipids in proton MR spectroscopy of brain diseases, Magn.
Reson. Med. 49 (2003) 19–28.

[29] E. Cabanes, S. Confort Gouny, Y. Le Fur, G. Simond, P.J. Cozzone,
Optimization of residual water signal removal by HLSVD on
simulated short echo time proton MR spectra of the human brain,
J. Magn. Reson. 150 (2001) 116–125.

[30] U. Klose, In vivo proton spectroscopy in presence of eddy currents,
Magn. Reson. Med. 14 (1990) 26–30.

[31] R. Bartha, D.J. Drost, R.S. Menon, P.C. Williamson, Spectroscopic
lineshape correction by QUECC: combined QUALITY deconvolu-
tion and eddy current correction, Magn. Reson. Med. 44 (4) (2000)
641–645.

[32] V. Govindaraju, K. Young, A.A. Maudsley, Proton NMR chemical
shifts and coupling constants for brain metabolites, NMR Biomed. 13
(3) (2000) 129–153.



304 J.-B. Poullet et al. / Journal of Magnetic Resonance 186 (2007) 293–304
[33] K. Young, B.J. Soher, A.A. Maudsley, Automated spectral analysis
II: application of wavelet shrinkage for characterization of non-
parameterized signals, Magn. Reson. Med. 40 (6) (1998) 816–821.

[34] S.W. Provencher, Estimation of metabolite concentrations from
localized in vivo proton NMR spectra, Magn. Reson. Med. 30 (6)
(1993) 672–679.

[35] H. Ratiney, Y. Coenradie, S. Cavassila, D. van Ormondt, D.
Graveron-Demilly, Time-domain quantitation of 1H short echo-time
signals: background accommodation, Magn. Reson. Mater. Phys. 16
(6) (2004) 284–296.
[36] B.J. Soher, K. Young, A.A. Maudsley, Representation of strong
baseline contributions in 1H MR spectra, Magn. Reson. Med. 45 (6)
(2001) 966–972.

[37] L. Hofmann, J. Slotboom, C. Boesch, R. Kreis, Characterization of
the macromolecule baseline in localized 1H-MR spectra of human
brain, Magn. Reson. Med. 46 (5) (2001) 855–863.

[38] J.W. van der Veen, R. de Beer, P.R. Luyten, D. van Ormondt,
Accurate quantification of in vivo 31P NMR signals using the variable
projection method and prior knowledge, Magn. Reson. Med. 6 (1)
(1988) 92–98.


	Frequency-selective quantitation of short-echo time 1H magnetic resonance spectra
	Introduction
	Theory
	Model
	MP-FIR
	HLSVD-PRO

	Materials and methods
	Database and simulated signals
	Methodology
	In vivo experiment

	Results
	In vivo experiment

	Discussion
	Conclusions
	Acknowledgments
	References


